The Effect of Birth Location in an Intense Laser Focus on the Non-Sequential Double Ionization Yield

JAY PAQUETTE, JAN CHALOUPKA, College of William and Mary — Atoms in an intense laser field can become doubly ionized through a direct process known as rescattering, where a single electron is liberated through tunnel ionization and is driven back to the ion core by the laser field, leading to impact ionization and release of a second electron. In this quasi-classical description, the trajectory of the first electron will have a strong influence on the probability of release of a second electron, as evidenced by the reduction in yield with elliptical laser polarization. Even with linear polarization, the first electron can avoid a reencounter with the ion due to the $\mathbf{v} \times \mathbf{B}$ term or the longitudinal electric field component (E_z) in the laser focus. Since the E_z term is given from the requirement of zero divergence of the electric field, its magnitude will vary as a function of position within the laser focus. Using completely classical 3-D simulations, we demonstrate how longitudinal electric field variations affect electron trajectories, how the ion yields from various regions within the focus are affected, and the likelihood of observing this effect experimentally.

Jay Paquette
College of William and Mary

Date submitted: 27 Nov 2007