Enhanced Electronic Density of States Observed in Fe-Cr Magnetic Multi-Layers

DAVID W. COOKE, FRANCES HELLMAN, Physics Dept., University of California at Berkeley, MATTHEW CAREY, Hitachi Global Storage Technologies San Jose Research Center — Magnetic multi-layer structures have garnered much interest over the past two decades particularly because of the giant magnetoresistance (GMR) effect and its application to information storage technology. Iron-chromium multi-layer structures have been studied extensively, but there remain many questions in the field due to the complex behavior of the antiferromagnetic layer (Cr). Using our silicon micro-machined calorimeters, we examine the low temperature specific heat for a range of sputtered MML films grown under similar conditions to those used in industry. We have observed an enhanced electronic density of states in the Fe-Cr MMLs far beyond that of the iron or chromium individually. We compare this enhancement to the observed GMR behavior through a systematic study varying the thickness of the spacer layer.

1This work was supported by the Director of the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

David W. Cooke
Physics Dept., University of California at Berkeley

Date submitted: 27 Nov 2007