Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

\textit{K-momentum dark exciton energy in carbon nanotubes}1 O. N. TORRENS, J. M. KIKKAWA, Department of Physics and Astronomy, University of Pennsylvania, M. ZHENG, DuPont CR&D — Phonon sideband optical spectroscopy determines the energy of the dark K-momentum exciton for (6,5) carbon nanotubes (CNTs). One-phonon sidebands appear in absorption and emission, split by two zone-boundary (K-point) phonons. Their average energy locates the E_{11} K-momentum exciton 36 meV above the E_{11} bright level, higher than available theoretical estimates. A model for exciton-phonon coupling shows the absorbance sideband depends sensitively on the K-momentum exciton effective mass and has minimal contributions from zone-center phonons, which dominate the Raman spectra of CNTs.

1Supported by NSF MRSEC DMR-0520020.

O. N. Torrens
University of Pennsylvania

Date submitted: 27 Nov 2007
Electronic form version 1.4