Abstract Submitted for the MAR08 Meeting of The American Physical Society

Intra-valance transitions for uncooled short wave infrared detection¹ A.G. UNIL PERERA, S.G. MATSIK, P.V.V. JAYAWEERA, Georgia State University, H.C. LIU, M. BUCHANAN, National Research Council Canada, GEORGIA STATE UNIVERSITY USA TEAM, NATIONAL RESEARCH COUN-CIL CANADA TEAM — An infrared detector based on p-GaAs/AlGaAs heterojunction exhibiting response in the 2-5 μ m range at room temperature is demonstrated. The basic principle of the detector utilizes inter-valance (heavy hole, light hole, and split-off hole) absorption of a highly p-doped GaAs layer (emitter). The dark current is limited by the work function at the interface between the highly doped emitter and the undoped $Al_xGa_{1-x}As$ barrier. The barrier height can be tailored by varying the Al fraction to obtained the desired operating temperature. The split-off energy of the material determines the split-off threshold and the band offset determines the free carrier threshold for the photo excited carriers. Detector performance can be controlled by varying these two thresholds. A device consisting of 30 periods of 3×10^{18} cm⁻³ p-doped GaAs emitter and Al_{0.57}Ga_{0.43}As barrier regions between two contact layers shows infrared detection up to 330 K with a peak responsivity of 1.4 A/W and D* of 2.6×10^9 Jones at 2.5 μm . Different materials should give rise to different wavelength threshold infrared detectors operating at high temperatures.

¹Work supported by US NSF grant # ECS 05-53051.

A. G. Unil Perera Georgia State University

Date submitted: 04 Dec 2007

Electronic form version 1.4