Abstract Submitted for the MAR08 Meeting of The American Physical Society

Pressure Dependent Magnetism in Magnetically Ordered Interlanthanide Chalcogenides¹ E.S. CHOI, Florida State University/NHMFL, R.P. GUERTIN, Tufts University, THOMAS ALBRECHT-SCHMITT, G.B. JIN, Auburn University — Several new interlanthanide chalcogenide compounds, Ln'/Ln''/Q (Ln=light and Ln''=heavy lanthanide, Q=S or Se) have been synthesized using a novel flux-growth technique, their complex structures determined, and their magnetic properties measured. The majority, with general formula Ln'Ln''Q₃ are paramagnetic for T> 2K, with effective moments consistent with the magnetic Ln constituents. $EuLn_2Q_4$ (Ln=Tb - Lu), which crystallize in the CaFe₂O₄- type three-dimensional channel structure, are all antiferromagnetic with $T_N \sim 3-5$ K. The Ln constituent is geometrically frustrated and has secondary effects on the magnetic properties, which are dominated by the Eu-Eu superexchange coupling. The sharply defined Neel temperature increases with hydrostatic pressure to $P \sim 7$ kbar for all $EuLn_2Q_4$. (For example, for EuLu2Se4, $dT_N/dP = +0.03$ K/kbar at low pressures.)

¹Work at Auburn supported by the US DOE through the EPSCoR program. NHMFL supported by NSF and the State of Florida.

E.S. Choi FSU/NHMFL

Date submitted: 14 Dec 2007

Electronic form version 1.4