Abstract Submitted for the MAR08 Meeting of The American Physical Society

Twinkling Fractal Theory of the Glass Transition.¹ RICHARD WOOL, Department of Chemical Engineering, University of Delaware — A new approach to the glass transition temperature T_q considers the interaction of particles with an anharmonic potential U(x), and Boltzmann population $\phi(x) \sim \exp(-\frac{1}{2})$ -U(x)/kT. As T_q is approached from above, solid clusters of atoms form and percolate at T_q . However, the solid percolation cluster is in dynamic equilibrium with its surrounding liquid and "twinkles" as solid and liquid atoms interchange. The twinkling frequency $F(\omega)$ is related to the vibrational density of states $G(\omega) \sim$ ω^{df} and the energy difference $\Delta U \sim (T^2 - T_a^2)$ via $F(\omega) \sim G(\omega) \exp -\Delta U/kT$, where $d_f = 4/3$ is the fracton dimension. $F(\omega)$ controls the rate dependence of T_g , physical aging, yield stress, heat capacity C_p , T_g of thin films, etc. When $T < T_g$, the non-equilibrium volume development ΔV , is determined by the fractal structure at T_q . The thermal expansion coefficients in the liquid and glass are related via $\alpha_g = p_c \alpha_L$. For a Morse potential U(x) = $D_o[1-\exp ax]^2$, we predict that $T_g =$ $2D_o/9k$, and $\alpha_L = 3k/[4D_oaR_o]$. For atoms with $R_o \approx 3$ Å, bond energy $D_o \approx$ 2-10 kcal/mol and anharmonicity factor $a \approx 2/\text{\AA}$, we obtain $\alpha_L T_g \approx 0.03$, and modulus $E \sim 1/\alpha_L$, which were found for a broad range of polymers. The yield stress σ_y is determined by the onset of the twinkling fractal state as $\sigma_y = \{0.16 \text{ E}$ $[\mathbf{p}_s - \mathbf{p}_c] \overset{\circ}{\mathbf{D}}_o / \mathbf{V}_m \}^{1/2}$ where \mathbf{V}_m is the molar volume.

¹Supported by USDA-NRI and CMR-ARL

Richard Wool Department of Chemical Engineering, University of Delaware

Date submitted: 27 Nov 2007

Electronic form version 1.4