Abstract Submitted for the MAR08 Meeting of The American Physical Society

Oxygen-Induced Reconstructions on the β -Si₃N₄ (1010) Surfaces WERONIKA WALKOSZ, JUAN CARLOS IDROBO, SERDAR OGUT¹, University of Illinois at Chicago — Motivated by recent electron microscopy studies at the Si₃N₄/rare-earth oxide (REO) interfaces, we present first principles calculations for the preferred bonding sites and configurations of oxygen on various terminations of the β -Si₃N₄ (1010) surface as a function of coverage and surface stoichiometry. We predict that oxygen induces various surface reconstructions, and it has a strong tendency to replace N on the surface. The structural stability of most low-energy surfaces is driven by the tendency of Si to saturate its dangling bonds and of oxygen to bridge two Si atoms similar to the bonding in SiO₂. The present *ab initio* results resolve the discrepancy between the experimental observations at the Si₃N₄/REO interfaces and previous theoretical studies² for bare surfaces regarding the lowest energy surface termination.

¹Supported by NSF Grant No. DMR-0604964 ²Juan C. Idrobo *et al.*, Phys. Rev. B **72**, 241301(R) (2005).

> Serdar Ogut University of Illinois at Chicago

Date submitted: 27 Nov 2007

Electronic form version 1.4