Abstract Submitted for the MAR08 Meeting of The American Physical Society

Phase transitions in R_5 **NiPb**₃ (R=Ce,Nd,Gd)¹ V. GORUGANTI, K. D. D. RATHNYAYAKA, JOSEPH H. ROSS, JR., Department of Physics, Texas A&M University — We report magnetic and thermodynamic measurements for recently-synthesized R_5 NiPb₃ (R=Ce,Nd,Gd) (hexagonal Hf₅CuSn₃-type structure), as well as non-magnetic La-based analogs. High-temperature Curie-Weiss fits yield effective moments of 2.43, 3.70 and 9 μ_B for Ce₅NiPb₃, Nd₅NiPb₃ and Gd₅NiPb₃ respectively. These are close to the R^{3+} ionic moments, showing that Ni is nonmagnetic in all cases. For Ce_5NiPb_3 a peak seen in both the magnetization and specific heat at 48 K indicates an apparent ferromagnetic transition at that temperature, which is also confirmed by field dependent heat capacity and a positive Curie-Weiss temperature. Nd₅NiPb₃ exhibits two magnetic transitions, an antiferromagnetic transition at 42 K and an apparently weak ferromagnetic canting transition at 8 K. Ce_5NiPb_3 shows a kink in both the magnetization and specific heat at 68 K indicates a ferro- or ferrimagnetic transition at that temperature, which is also confirmed by a positive Curie-Weiss temperature. For this material, ZFC and FC measurements show irreversibility at transition temperature. For Ce and Nd samples M-H curves show metamagnetism at low temperatures. We will compare the results with the non magnetic analog La₅NiPb₃.

¹Supported by Welch Foundation (A-1526), NSF (DMR-0315476)

Venkat Goruganti Physics Department, Texas A&M University

Date submitted: 27 Nov 2007

Electronic form version 1.4