Effect of Disorder on a Bose-Einstein Condensate with Tunable Interactions1 D. DRIES, YONG P. CHEN2, J. HITCHCOCK, M. JUNKER, T. A. CORCOVILOS, C. WELFORD, R. G. HULET, Rice University Physics and Astronomy and Rice Quantum Institute — We have investigated the effect of a disordered optical potential on the transport and phase coherence of a Bose-Einstein condensate (BEC) of 7Li. We observe damping of BEC dipole oscillations even when the disorder strength, V_D, is small, while for large V_D, transport is completely inhibited. Time-of-flight images show that the BEC gradually loses phase coherence for $V_D \geq \mu/2$, with coherence completely lost when $V_D = \mu$, where μ is the chemical potential of the BEC. We interpret this loss of coherence as resulting from fragmentation of the BEC as seen from \textit{in-situ} measurements of the density distribution.

While these experiments were performed with a BEC healing length, ξ, that is small in comparison to the disorder length scale, we are currently attempting to observe the Anderson localization predicted to occur for large ξ. Using a magnetically-tuned Feshbach resonance, the s-wave scattering length, a_s, is reduced to near zero where ξ becomes very large. Results of applying the disorder potential to this nearly non-interacting condensate, with a_s much less than the Bohr radius, will be reported.

1Supported by NSF, ONR, NASA, Welch
2Now at Purdue University