Abstract Submitted for the MAR08 Meeting of The American Physical Society

AntiferromagneticDomainSizeMeasurement in $Fe_{0.70}Zn_{0.30}F_2/Co$ Bilayers¹ DAVID LEDERMAN, HONG-
TAO SHI², Dept of Physics, West Virginia University, MICHAEL FITZSIMMONS,
Los Alamos National Laboratory — The size of the antiferromagnetic domains of
an epitaxial (110) $Fe_{0.70}Zn_{0.30}F_2$ dilute Ising antiferromagnetic layer 68 nm thick
with a polycrystalline Co overlayer 27 nm thick was studied via neutron diffraction.
The sample's exchange bias changed sign from negative to positive as the tempera-
ture was increased, with the switching temperature, at which the exchange bias was
zero, occurring at T = 20 K. The width of the (100) antiferromagnetic peak of the
 $Fe_{0.70}Zn_{0.30}F_2$ layer was significantly narrower at the switching temperature than at
either T = 5.5 K or T = 30 K. This result is consistent with models that predict an
inverse relationship between the antiferromagnetic domain size and exchange bias.

¹Supported by the National Science Foundation at WVU (grant DMR-0400578) and the Dept of Energy at LANSCE.

²Presently at Dept of Physics, Sonoma State University

David Lederman Dept of Physics, West Virginia University

Date submitted: 04 Dec 2007

Electronic form version 1.4