Point-contact Andreev reflection tunneling spectroscopy (PCARTS) of the superconducting gap structure in LuNi$_2$B$_2$C1 XIN LU, W.K. PARK, L.H. GREENE, Physics and FSMRL, UIUC, SUNMOG YEO, KYU-HWAN OH, SUNG-IK LEE, Pohang, Korea, SERGEY L. BUD’KO, PAUL C. CANFIELD, Ames Lab and ISU — The PCARTS technique is employed to investigate the gap anisotropy and proposed existence of point-nodes in LuNi$_2$B$_2$C ($T_C \sim 16$ K). Differential conductance spectra are taken from two different sets of single crystal samples along three major orientations: [001], [110], and [100]. Analyzing using the single-gap Blonder-Tinkham-Klapwijk (BTK) model reproducibly shows the gaps along these directions are 2.4, 2.6, and 2.3 meV, respectively, for one set of samples and 2.4, 2.8, and 2.7 meV, respectively, for the other set. This is smaller than the gap anisotropy reported by other groups\cite{1}. At low temperatures, the single-gap BTK model does not satisfactorily fit our data. Models employing an anisotropic gap are being investigated, as are experiments parameterizing the tunneling cone effect.

1Supported by the U.S. DoE DEFG02-91ER45439 through FSMRL and CMM at UIUC and NSF DMR 07-06013 and by DoE DE-AC02-07CH11358 at Ames Lab.

Xin Lu
Physics and FSMRL, UIUC

Date submitted: 04 Dec 2007

Electronic form version 1.4