Abstract Submitted for the MAR08 Meeting of The American Physical Society

Hydrogen clusters that remained fluid KIRILL KUYANOV-PROZUMENT, ANDREY VILESOV — Para-H₂ may constitute the only other superfluid besides helium. The superfluid transition temperature is predicted to be around 2 K, well below freezing of H_2 at 13.8 K. Numerous attempts to supercool macroscopic H₂ samples proved to be unsuccessful. Our approach includes formation of H₂ clusters in a pulsed cryogenic nozzle beam expansion of a neat pH_2 gas as well as X% of pH_2 diluted in He and interrogation via Coherent Anti-Stokes Raman Scattering. At X = 2 - 100 % the frequency of the vibrational $Q_1(0)$ line in clusters remains constant at about $\nu = 4149.7 \text{ cm}^{-1}$ very similar to 4149.6 cm⁻¹ as in solid pH_2 and lower than in liquid pH_2 at 18 K (4151.9 cm⁻¹). The rotational $S_0(0)$ transition show some characteristic crystal field splitting having magnitude of about 6 cm⁻¹. The splitting pattern is different from that in the *hcp* solid, suggesting different structure in solid pH_2 clusters. At $X \leq 2$ %, the frequency of the $Q_1(0)$ line increases to about 4150.5 cm⁻¹, which is consistent with that expected in the supercooled liquid. The $S_0(0)$ transition in these clusters, consisting of about 5 x 10⁴ molecules, appears as a single line at the same frequency as in liquid pH_2 . The temperature of these supercooled clusters is estimated to be less than about 1 K. Possible superfluidity of the clusters is discussed.

Kirill Kuyanov-Prozument

Date submitted: 14 Dec 2007

Electronic form version 1.4