Membrane-mediated mechanism of amyloid oligomer toxicity in Alzheimer’s Disease. FRANK HEINRICH1, Carnegie Mellon University, YURI SOKOLOV, JAMES E. HALL, University of California, Irvine, RIMA BUDVYTYTE, GINTARAS VALINCIUS, Institute of Biochemistry, Vilnius, MATHIAS LOESCHE2, Carnegie Mellon University — There is strong evidence, that soluble amyloid β (Aβ) oligomers, involved in Alzheimer’s Disease, are the primary toxic species of Aβ, although the mechanism of cell toxicity is very much debated [1]. Neutron reflectivity and electrical impedance spectroscopy assess the structural impact of Aβ (1-42) oligomers and their effect on the electrical properties of a tethered phosphocholine model membrane. Two distinct and reversible peptide–membrane interactions were revealed: At low Aβ concentrations an equal incorporation of Aβ into both lipid leaflets and a compaction of the lipid membrane takes place. Aβ locally lowers the dielectric barrier for ion transport and the activation energy for ion transport through the bilayer remains significantly above that of a water-filled transmembrane pore. At high Aβ concentrations, an additional membrane thinning is observed. [1] D. Eliezer, J. Gen. Physiol. 128:631 (2006).

1also at the NIST Center for Neutron Research
2also at the NIST Center for Neutron Research

Mathias Loesche
Carnegie Mellon University

Date submitted: 27 Nov 2007
Electronic form version 1.4