Abstract Submitted for the MAR08 Meeting of The American Physical Society

Three-body interactions in liquid and solid hydrogen: Evidence from vibrational spectroscopy ROBERT HINDE, Univ. of Tennessee — In the cryogenic low-density liquid and solid phases of H₂ and D₂, the H₂ and D₂ molecules retain good rotational and vibrational quantum numbers that characterize their internal degrees of freedom. High-resolution infrared and Raman spectroscopic experiments provide extremely sensitive probes of these degrees of freedom. We present here fully-first-principles calculations of the infrared and Raman spectra of liquid and solid H₂ and D₂, calculations that employ a high-quality six-dimensional coupledcluster H₂-H₂ potential energy surface and quantum Monte Carlo treatments of the single-molecule translational degrees of freedom. The computed spectra agree very well with experimental results once we include three-body interactions among the molecules, interactions which we also compute using coupled-cluster quantum chemical methods. We predict the vibrational spectra of liquid and solid H₂ at several temperatures and densities to provide a framework for interpreting recent experiments designed to search for superfluid behavior in small H_2 droplets. We also present preliminary calculations of the spectra of mixed H₂/D₂ solids that show how positional disorder affects the spectral line shapes in these systems.

> Robert Hinde Univ. of Tennessee

Date submitted: 27 Nov 2007 Electronic form version 1.4