Abstract Submitted for the MAR08 Meeting of The American Physical Society

 μ SR study of spin dynamics and phase transition of the two-dimensional tetramer-cuprate $Na_5RbCu_4(AsO_4)_4Cl_2$ ANNIKA KRI-ISA, RAIVO STERN, National Institute of Chemical Physics and Biophysics, SHIOU-JYH HWU, WENDY QUEEN, Department of Chemistry, Clemson University, HUBERTUS LUETKENS, Laboratory for Muon-Spin Spectroscopy Paul Scherrer Institut — In an effort to explain the magnetic properties of such lowdimensional systems, ⁸⁷Rb Nuclear Magnetic Resonance (NMR) experiments in a Na₅RbCu₄(AsO₄)Cl₂ system were performed. This novel two-dimensional (2D) cuprate contains layers of coupled Cu₄O₄ tetramers. The spin exchange interactions are confined to 2D layers and the Cu are divalent, making the system a s=1/2antiferromagnet. In zero applied magnetic field, it orders antiferromagnetically via a second-order phase transition at $T_N=15(1)$ K. The ordered state was characterized by ⁸⁷Rb NMR, and a non-collinear rather than collinear arrangement of spins was suggested. New structural phase transition(s) around 74 and 110 K were also evidenced. We present a μ SR study of this cuprate. The investigation of the spin dynamics (via the muon longitudinal relaxation rate $\lambda(T)$) in the temperature range 2 < T < 300K in zero-field, with particular attention to the order parameter below T_N and around structural phase transitions at $T \sim 74$ K and $T \sim 110$ K is shown.

> Annika Kriisa National Institute of Chemical Physics and Biophysics

Date submitted: 27 Nov 2007

Electronic form version 1.4