Ensemble density functional theory, the atom-in-molecule problem, and reactive charge transfer

SUSAN ATLAS, Department of Physics and Astronomy, University of New Mexico, STEVEN VALONE, Materials Science and Technology Division, Los Alamos National Laboratory — A major challenge in large-scale simulations of complex biomolecular and materials systems is the ability to accurately describe reactive dynamics. We have previously described a new multiscale formalism, based on density functional theory and the embedded-atom method, that enables the rigorous encoding of quantum mechanical excitation effects such as charge polarization and charge transfer within a classical potential. Here we describe a new formulation of a key element of the theory: the deconstruction of molecular densities into subsystem atom-in-molecule components via ensemble constrained-search density functional theory. The method is implemented via the self-consistent solution of coupled sets of Kohn-Sham equations in conjunction with chemical potential equalization across subsystems. This leads to a natural interpretation of dynamical charge transfer and charge polarization in terms of an electronic entropy, thus extending the seminal work of Gross, Oliveira, and Kohn (1988).

Supported by NSF grant CHE-0304710