Scaling of the ODT of Block Copolymers in Compressed CO₂

CURRAN CHANDLER, TIMOTHY FRANCIS, JAMES WATKINS, University of Massachusetts, Amherst; Department of Polymer Science & Engineering — It is well-known that diblock copolymers with sufficient \(\chi N \) form periodic microphase-separated domains upon cooling through an order-disorder transition (ODT). We have investigated the scaling behavior of the ODT as a function of polymer volume fraction, \(\phi \), of several nearly symmetric poly(styrene-b-2-vinylpyridine) and poly(styrene-b-isoprene) diblock copolymer/diluent systems in relation to the well-known dilution approximation. Using compressed CO₂ in the place of conventional liquid diluents allowed the determination of the scaling parameter, \(\alpha \), for highly concentrated systems where \(\phi \) ranges from 0.85 to 1.0 at high temperatures. The scaling was determined by combining optical birefringence measurements of the ODT (\(\chi_{ODT} \)) with the ellipsometric swelling measurements (\(\phi \)) of the constituent homopolymers at increasing CO₂ pressures. We show that sorption of small volume fractions of CO₂ results in significant reductions in the observed ODTs. Yet, \(\alpha \) was clearly shown not to be universal even for a specific diblock copolymer. For styrene-b-isoprene copolymers, it appears that \(\alpha \) is an increasing function of copolymer molecular weight. In contrast, the styrene-b-2-vinylpyridine copolymers studied show no obvious correlation with molecular weight, with \(\alpha \) taking on both positive and negative values.

\(^1\)Currently at BASF

Curran Chandler
University of Massachusetts, Amherst; Department of Polymer Science & Engineering

Date submitted: 05 Dec 2007 Electronic form version 1.4