MAR08-2007-007484

Abstract for an Invited Paper for the MAR08 Meeting of the American Physical Society

Protein folding, stability, and solvation structure in osmolyte solutions hydrophobicity B. MONTGOMERY PETTITT, University of Houston

The hydrophobic effect between solutes in aqueous solutions plays a central role in our understanding of recognition and folding of proteins and self assembly of lipids. Hydrophobicity induces nonideal solution behavior which plays a role in many aspects of biophysics. Work on the use of small biochemical compounds to crowd protein solutions indicates that a quantitative description of their non-ideal behavior is possible and straightforward. Here, we will show what the structural origin of this non-ideal solution behavior is from expression derived from a semi grand ensemble approach. We discuss the consequences of these findings regarding protein folding stability and solvation in crowded solutions through a structural analysis of the m-value or the change in free energy difference of a macromolecule in solution with respect to the concentration of a third component. This effect has recently been restudied and new mechanisms proposed for its origins in terms of transfer free energies and hydrophobicity.