Dynamic observation of magnetoelectric coupling effect using magnetic force microscopy and Lorentz TEM1 SUNG HWAN LIM, TODD BRINTLINGER, DAISUKE KAN, YI QI, JOHN CUMINGS, ICHIRO TAKEUCHI, LOURDES SALAMANCA-RIBA, University of Maryland — Dynamic observation of the strain mediated magnetoelectric (ME) coupling effect was pursued by applying an external electric (E) field to a Fe\textsubscript{0.7}Ga\textsubscript{0.3}/BaTiO\textsubscript{3}(FeGa/BTO) TEM sample in the Lorentz imaging mode in a TEM. An epitaxial piezoelectric BTO layer followed by a polycrystalline magnetostrictive FeGa layer were synthesized by pulsed laser deposition and magnetron sputtering, respectively. The BTO film had $P_s = 17 \mu $C/cm2 measured using SrRuO$_3$ (bottom) and FeGa (top) electrodes. The FeGa film showed strong magnetic anisotropy with in-plane easy axis. To apply an E field in-plane, FeGa was patterned on BTO using e-beam lithography. The change of magnetic domain structure was observed under an applied magnetic field in TEM. The ME effect was also investigated using MFM. After applying an E field (100 kV/cm) on the BTO layer, a reorientation of the magnetic moments in the FeGa layer along the E field direction was observed.

1This work was supported by NSF MRSEC DMR 0520471, ARO 28D1083899, ONR-MURI N000140610530.

Sung Hwan Lim
University of Maryland

Date submitted: 27 Nov 2007
Electronic form version 1.4