Pressure effect of single ion Kondo temperature in Ce$_{0.02}$La$_{0.98}$RhIn$_5$

H. LEE, V.A. SIDOROV, Los Alamos National Laboratory, Los Alamos, NM 87544, L.M. FERREIRA, Instituto de Física Gleb Wataghin, UNICAMP, 13083-970, Campinas, Brazil, T. PARK, F. RONNING, E.D. BAUER, J.D. THOMPSON, Los Alamos National Laboratory, Los Alamos, NM 87544 — Near a critical pressure $P_c \sim 25$ kbar, CeRhIn$_5$ assumes characteristics of CeCoIn$_5$ at atmospheric pressure: they have comparable T_C, similar dHvA frequencies, and display quantum-critical behaviors. Many properties of CeCoIn$_5$ can be interpreted within a two-fluid phenomenology1 in which there are interpenetrating fluids, a localized f-electron Kondo gas (energy scale T_K) and an interacting Kondo liquid (energy scale T^*). We have measured transport properties of Ce$_{0.02}$La$_{0.98}$RhIn$_5$ under pressures to 50 kbar to determine $T_K(P)$, which at $P=0$ is estimated to be $\sim 0.03K$ from specific heat measurements. $T_K(P)$ increases rapidly, reaching $\sim 1.35K$ at 25 kbar, where it becomes comparable to T_K ($\sim 1.8K$) of CeCoIn$_5$ at $P=0$. A comparison of $T_K(P)$ with $T^*(P)$, determined from the pressure studies of CeRhIn$_5$, reveals the same correlation between T_K and T^* inferred from a two-fluid analysis of CeCoIn$_5$, further supporting the similarity of these two compounds and the two-fluid phenomenology. [1] S. Nakatsuji et al., Phys. Rev. Lett. 92, 016401 (2004).

Han-Oh Lee
Los Alamos National Laboratory

Date submitted: 05 Dec 2007