Abstract Submitted for the MAR08 Meeting of The American Physical Society

Pressure effect of single ion Kondo temperature in Ce_{.02}La_{.98}RhIn₅ H. LEE, V.A. SIDOROV, Los Alamos National Laboratory, Los Alamos, NM 87544, L.M. FERREIRA, Instituto de Fisica Gleb Wataghin, UNICAMP, 13083-970, Campinas, Brazil, T. PARK, F. RONNING, E.D. BAUER, J.D. THOMPSON, Los Alamos National Laboratory, Los Alamos, NM 87544 — Near a critical pressure $P_c \sim 25$ kbar, CeRhIn₅ assumes characteristics of $CeCoIn_5$ at atmospheric pressure: they have comparable T_C , similar dHvA frequencies, and display quantum-critical behaviors. Many properties of $CeCoIn_5$ can be interpreted within a two-fluid phenomenology¹ in which there are interpenetrating fluids, a localized f-electron Kondo gas (energy scale T_K) and an interacting Kondo liquid (energy scale T^{*}). We have measured transport properties of $Ce_{.02}La_{.98}RhIn_5$ under pressures to 50 kbar to determine $T_K(P)$, which at P=0 is estimated to be ~ 0.03K from specific heat measurements. $T_K(P)$ increases rapidly, reaching ~1.35K at 25 kbar, where it becomes comparable to T_{K} (~1.8K) of CeCoIn₅ at P=0. A comparison of $T_K(P)$ with $T^*(P)$, determined from the pressure studies of CeRhIn₅, reveals the same correlation between T_K and T^* inferred from a two-fluid analysis of $CeCoIn_5$, further supporting the similarity of these two compounds and the two-fluid phenomenology. [1] S. Nakatsuji et al., Phys. Rev. Lett. 92, 016401 (2004).

> Han-Oh Lee Los Alamos National Laboratory

Date submitted: 05 Dec 2007

Electronic form version 1.4