First-Principles Study of the Jahn-Teller Distortion in the Ti$_{1-x}$V$_x$H$_2$ and Zr$_{1-x}$Nb$_x$H$_2$ Alloys

RAMIRO QUIJANO, ROMEO DE COSS, CINVESTAV-Unidad Merida, DAVID SINGH, Oak Ridge National Laboratory, USA — The transition metal dihydrides TiH$_2$ and ZrH$_2$ present the fluorite structure (CaF$_2$) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Electronic band structure calculations have shown that TiH$_2$ and ZrH$_2$ in the cubic phase display a very flat band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. In order to understand the role of band filling in controlling the structural instability of the transition metal dihydrides, we have performed a first-principles total energy study of the Ti$_{1-x}$V$_x$H$_2$ and Zr$_{1-x}$Nb$_x$H$_2$ alloys. The calculations were performed using FP-LAPW method within the (DFT) and we use the GGA for exchange correlation functional energy. The critical concentration for which the Jahn-Teller effect is suppressed, was determined from the evolution of the tetragonal-cubic energy barrier. We discuss the electronic mechanism of the structural instability, in terms of the band filling. From the obtained results we conclude that the tetragonal distortion in TiH$_2$ and ZrH$_2$ is not produced only by a Jahn-Teller Effect. This research was supported by Consejo Nacional de Ciencia y Tecnologia (Conacyt) under Grant No. 43830-F.

Ramiro Quijano
CINVESTAV-Unidad Merida

Date submitted: 05 Dec 2007 Electronic form version 1.4