Ferromagnetism and localization in Ga$_{1-x}$Mn$_x$As, Ga$_{1-x}$Mn$_x$P, and in between1

OSCAR DUBON, U.C. Berkeley and Lawrence Berkeley National Laboratory

Because of their potential as both injectors and filters of spin-polarized carriers, ferromagnetic semiconductors may play an important role in spin-based electronics, or spintronics. Ferromagnetic semiconductors are formed by the substitution of a relatively small fraction of host atoms with a magnetic species. Ga$_{1-x}$Mn$_x$As has been the most thoroughly studied material among these, and ferromagnetism in it arises from hole-mediated inter-Mn exchange. The Curie temperature T_C in Ga$_{1-x}$Mn$_x$As has been shown to increase with increasing concentration of substitutional Mn acceptors. However, room temperature ferromagnetism in this canonical system has been elusive due to challenges in materials synthesis—namely, raising x while avoiding the formation of second phases or compensating defects. Increasing $p-d$ exchange by modifying the host semiconductor via anion substitution (e.g., replacing As with P) is a significantly less explored route by which T_C may be raised. We are investigating the effect of anion substitution in ferromagnetic Ga$_{1-x}$Mn$_x$As$_{1-y}$P$_y$ formed by ion implantation followed by pulsed-laser melting. In the endpoint compound Ga$_{1-x}$Mn$_x$P T_C is found to vary linearly with x, and non-metallic transport is observed for x up to \sim4.2%, corresponding to a T_C of \sim62 K compared to \sim112 K for Ga$_{1-x}$Mn$_x$As with a similar x. Dilution of the endpoint compound Ga$_{1-x}$Mn$_x$As with P results in a precipitous decrease in T_C to below 60 K for $y=2.8%$. Remarkably, Ga$_{1-x}$Mn$_x$As$_{1-y}$P$_y$ films undergo a metal-insulator transition between $y=1.5\%$ and 2.3\% even as x is held approximately constant indicating that alloy disorder in the anion sublattice induces hole localization, which in turn may be responsible for a strong suppression of T_C. Thus, while anion substitution may enhance $p-d$ exchange, localization effects must be considered when developing a suitable picture for ferromagnetism in these materials.

1Supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231