Abstract Submitted for the MAR08 Meeting of The American Physical Society

Magnetic excitations in the high-temperature superconductors $HgBa_2CuO_{4+\delta}$ and $Nd_{1.845}Ce_{0.155}CuO_4$ GUICHUAN YU, YUAN LI, EUGENE MOTOYAMA, Stanford University, PHILIPPE BOURGES, Laboratoire Léon Brillouin, KLAUDIA HRADIL, RICHARD MOLE, Forschungsneutronenquelle Heinz Maier-Leibnitz, MARTIN GREVEN, Stanford University — We report inelastic neutron scattering results for the magnetic excitations in hole-doped HgBa₂CuO_{4+ δ} (Hg1201) and electron-doped $Nd_{2-x}Ce_xCuO_{4+\delta}$ (NCCO). The magnetic resonance mode has been observed previously in the superconducting state of several holedoped systems. Recently, this mode has also been claimed to be present in the electron-doped compounds. We found in underdoped Hg1201 ($T_c \sim 85$ K) the resonance-like feature appearing at rather high energy of 57(2)meV. Surprisingly, the dynamic susceptibility enhancement appears below the pseudogap temperature T^* and shows no anomaly at T_c . Unlike recent reports for optimally-doped NCCO and $(Pr,La,Ce)_2CuO_{4+\delta}$, we found no evidence for a resonance mode in NCCO (x=0.155) in the 7-12 meV range. Instead, we identify two lower-energy features. One is associated with spectral weight redistribution below T_c due to the electronic gap 2Δ , the other already present in normal state is likely associated with the significant spin correlations in the electron-doped cuprates.

> Guichuan Yu Stanford University

Date submitted: 14 Dec 2007 Electronic form version 1.4