Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

Hard X-ray Nanoprobe Development at Argonne National Laboratory

ROBERT WINARSKI, MARTIN HOLT, JORG MASER, VOLKER ROSE, DEMING SHU, BRIAN STEPHENSON, Argonne National Laboratory, CENTER FOR NANOSCALE MATERIALS / ADVANCED PHOTON SOURCE COLLABORATION — The Hard X-ray Nanoprobe beamline will explore nanoscale objects at a spatial resolution of 30 nanometers, using x-ray fluorescence spectroscopy, transmission imaging, diffraction, and scattering. X-ray fluorescence measurements will provide element-specific imaging of individual nanoparticles inside of samples. Transmission imaging will allow three dimensional mappings of thick specimens and devices. X-ray diffraction and scattering capabilities will examine strain states and ordering in nanoscale systems. The beamline is designed for two modes of operation: a scanning probe mode, where the spatially coherent fraction of the x-ray beam is focused by high-resolution x-ray optics onto a small area of a sample, and a full-field transmission mode, where the full, partially coherent x-ray beam is used to illuminate a sample for transmission imaging at high resolution.

1This research, including use of the Center for Nanoscale Materials, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357.

Robert Winarski
Argonne National Laboratory

Date submitted: 20 Dec 2007

Electronic form version 1.4