First and second order coherence of exciton-polariton condensates G. ROUMPOS, C.W. LAI1, E.L. Ginzton Lab., Stanford University, USA, A. FORCHEL, Technische Physik, Universitat Wurzburg, Germany, Y. YAMAMOTO2, E.L. Ginzton Lab., Stanford University, USA — The microcavity exciton-polariton system offers the possibility to study condensed matter physics with optical techniques. In particular, condensation of microcavity exciton-polaritons in momentum space, as well as spontaneous buildup of spatial and temporal coherence, were recently demonstrated. We investigate the first and second order coherence of exciton-polariton condensates both in coordinate and in momentum space. We measured the spatial coherence length of up to 20 μm, while $g^{(2)}(t = 0)$ was measured to be close to 2 for appropriate near- and far-field filtering. This experiment provides insights into the phase and intensity fluctuations induced by polariton interactions.

1Also in National Institute of Informatics, Japan
2Also in National Institute of Informatics, Japan and NTT Basic Research Laboratories, Japan

Georgios Roumpos
E.L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA

Date submitted: 26 Dec 2007

Electronic form version 1.4