Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

Effect of terminal functional group of self-assembled monolayers formed on gold surface on the adsorption of Amyloid fibrils by AFM

KOHEI UOSAKI, MASAYA TSUKAMOTO, KAZUYASU SAKAGUCHI, YUYA ASANOMI, Hokkaido University — Amyloid fibril, which is known to cause BSE and Alzheimer disease, is a solid and stable fiber of several tens of nm wide and several \(\mu \)m long and has a potential to be used as nano-materials because functional molecules and metal and semiconductor nano-particles can be attached. However, it is not yet possible to align the Amyloid fibrils on a solid surface as programmed. In this study, interaction between Amyloid \(\beta \) (A\(\beta \)) fibrils and self-assembled monolayers (SAMs) with various functional groups constructed on a gold surface was investigated by in situ AFM. Amyloid \(\beta \)10-35 (A\(\beta \)10-35) peptide was synthesized and the peptide was incubated at 37 deg. for more than a week to obtain the fibril. SAMs of alkylthiols with methyl, OH, COOH, NH2, and SO3 groups were formed on Au(111) surface and AFM images were obtained by MAC mode in a solution containing the fibrils. It was clarified that electrostatic and hydrophobic interactions play important roles in adsorption behavior of the fibrils.

This work was supported by MEXT, Japan for Promotion of Novel Interdisciplinary Fields

Kohei Uosaki
Hokkaido University

Date submitted: 23 Dec 2007

Electronic form version 1.4