Three-dimensional statistical reduction of the non-relativistic Schrödinger equation for electrons with pair-wise Coulomb interactions1

BOYAN OBRESHKOV, Arkansas University, Fayetteville, AR 72701, USA — Based on Ritz variational principle, we reduce in statistical fashion the non-relativistic N-body Schrödinger equation for electrons with Coulomb interactions to a three-dimensional wave-equation for the motion of one electron with the residual $N - 1$ electrons acting spectators of its motion \cite{Obreshkov2008}. As a consequence the Pauli's exclusion principle is interpreted as dynamical principle. Analytic solutions of the all electron quantal equations for the ground and excited states of the helium and lithium iso-electronic sequences will be represented and the comparison with the experimental measurements for the ground-state ionization potentials of atoms shown.

1Supported by NERSC Arkansas-Oklahoma.