Abstract Submitted for the MAR09 Meeting of The American Physical Society

Low energy metastable states and immiscibility in $(SiC)_{1-X}$ -(AIN)_X BENJAMIN BURTON, NIST, AXEL VAN DE WALLE, California Inst. of Technology, ALBERT DAVYDOV, NIST, VICTOR VINOGRAD, University of Frankfurt, Germany — A cluster expansion Hamiltonian was fit to VASP/PAW calculated supercell formation energies, ΔE_f , and first principles based phase diagrams (miscibility gaps) were calculated for the wurtzite-structure pseudobinary system SiC_{1-X}AlN_X. An unusually wide range of $3 \leq \Delta E_f \leq 125$ kJ/mole MX (M= Al, Si; X= N, C) was calculated and all supercells with $\Delta E_f \leq 8$ kJ/mole exhibited characteristic (SiC)_m(AlN)n crystallography, in which (SiC)_m indicates m SiC-double layers \perp to the hexagonal c-axis, and similarly for (AlN)n. The prediction of (SiC)_m(AlN)n low-energy metastable states, may explain why one can synthesize SiC_{1-X}AlN_X films, or single crystals of arbitrary bulk composition, in spite of the very strong tendency toward immiscibility. Specifically, one expects that metastable films or single crystals will be dominated by a disordered stacking of SiCand AlN-double layers.

> Benjamin Burton NIST

Date submitted: 27 Oct 2008

Electronic form version 1.4