Abstract Submitted for the MAR09 Meeting of The American Physical Society

Hydrogen Desorption Behavior of Nickel-Chloride-Catalyzed Stoichiometric Li₄BN₃H₁₀ FREDERICK PINKERTON, MARTIN MEYER, General Motors R&D Center — Li-B-N-H quaternary hydrides with the α -phase crystal structure form over a range of compositions between $Li_3BN_2H_8$ and $Li_4BN_3H_{10}$ and have up to 11.9 wt% hydrogen capacity. Previous work focused on the nonequilibrium $Li_3BN_2H_8$ composition created by ball milling because it has maximum hydrogen release and minimum NH_3 co-generation. Here we report the hydrogen and NH_3 release characteristics of α -phase material having the equilibrium Li₄BN₃H₁₀ composition. In the absence of a dehydrogenation catalyst, H₂ and NH₃ were released simultaneously in roughly equal quantities by weight (or about 10% NH₃ by volume) at temperatures above 240 °C. Adding Ni in the form of NiCl₂ as a dehydrogenation catalyst reduced the H₂ release temperature by 122 $^{\circ}$ C. NH₃ release, in contrast, still occurred only at the higher temperature. As a result, decomposition occurred in two steps separated in temperature, dominated by H_2 gas at low temperature and NH_3 at high temperature. The two gases clearly evolved in two distinct reactions that are coincident in uncatalyzed $Li_4BN_3H_{10}$, but can be separated by a dehydrogenation catalyst. We expect that NH_3 co-generation could be completely eliminated at sufficiently low dehydrogenation temperatures.

> Frederick Pinkerton General Motors R&D Center

Date submitted: 06 Nov 2008

Electronic form version 1.4