Abstract Submitted for the MAR09 Meeting of The American Physical Society

Quantum critical fluctuations in the itinerant antiferromagnet Nb₁₂O₂₉ JINGUANG CHENG, JIANSHI ZHOU, JOHN GOODENOUGH, TMI, University of Texas at Austin, HAIDONG ZHOU, NHMFL, Florida State University — Monoclinic Nb₁₂O₂₉ is a metallic antiferromagnet with $T_N \approx 12$ K. [1] We have studied critical behaviors near T_N by measuring the resistivity (ρ) , specific heat (C_p) , and thermoelectric power (S). As T_N is approached from T_N^+ , critical behaviors used in ferromagnetic metals, $d\rho/dT = (a^+/\alpha)|t|^{-\alpha} + b^+ + c^+ t$ and $C_p = (A^+/\alpha)|t|^{-\alpha} +$ $B^+ + C^+$ t provide the best description for $d\rho/dT$ and C_p , respectively. We found an identical α $\approx 0.2(2)$ in both $d\rho/dT$ and C_p , as predicted by Fisher and Langer in a ferromagnetic metal. [2] These observations indicate strong critical scattering of conduction electrons by short-range spin fluctuations near T_N . In addition, the S is strongly enhanced at low temperatures. The temperature dependence of S above T_N follows closely the formula S/T \propto -lnT, which suggests that quantum critical fluctuations [3] plays a role in enhancing the thermoelectric power on top of the classic critical fluctuations.

- [1] R. J. Cava, et al., Phys. Rev. B 44, 6973 (1991).
- [2] M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 665 (1968).
- [3] I. Paul and G. Kotliar, Phys. Rev. B 64, 184414 (2001).

Jinguang Cheng TMI, University of Texas at Austin

Date submitted: 10 Nov 2008 Electronic form version 1.4