Abstract Submitted for the MAR09 Meeting of The American Physical Society

Heavy Fermion and non-Fermi Liquid Properties vs Size: From the Micro to the Nano¹ G.R. STEWART, J.S. KIM, Physics/University of Florida, K. SAMWER, Physikalisches Institut, Universitaet Goettingen — Y. Y. Chen et al. have studied nanoparticles of several systems, including CePt₂ [1]. We report here the specific heat, C, down to 0.05 K and χ to 2 K as a function of size for several Ce- and U-heavy Fermion and non-Fermi liquid (nFl) systems, including UBe₁₃ and Rh-doped CeRu₂Si₂. Using dry sieves (for larger particles) and aqueous suspension/filtration techniques using $Isopore^{TM}$ filters (for smaller particles), size gradations from 45-53 μ (essentially bulk) down to 0.6-1.2 μ were studied. One goal was to study the evolution of nFl behavior vs decreasing size at a Quantum Critical Point, where the spatial extent of the fluctuations should become infinite, or at least larger than the particle at some size. Ce-systems showed the beginning of Kondo peak behavior in C below 3 μ , however it was still possible to determine the evolution of the intrinsic low temperature nFl C/T $\sim \log T$ in Rh-doped CeRu₂Si₂ as a function of decreasing size to address this goal. The effect of size on superconductivity and m^{*} in UBe₁₃ will also be discussed.

[1] Y. Y. Chen et al., Phys. Rev. Lett. 98, 157206 (2007).

¹Work at Florida supported by US DOE contract no. DE-FG02-86ER45268.

G. R. Stewart Physics/University of Florida

Date submitted: 13 Nov 2008

Electronic form version 1.4