Microwave dielectric study of spin-Peierls and charge ordering transitions in \((\text{TMTTF})_2\text{PF}_6\) salts

MARIO POIRIER, ALEXANDRE LANGLOIS, CLAUDE BOURBONNAIS, Universite de Sherbrooke, PASCALE FOURYLEYLEYEKIAN, ALEC MORADPOUR, JEAN-PAUL POUGET, Universite Paris XI Orsay — Using a microwave cavity perturbation technique at 16.5 GHz, we report a temperature and magnetic field study of the complex dielectric function along the stacking \(a\)-axis for a \((\text{TMTTF})_2\text{PF}_6\) single crystal and its deuterated analog \((d_{12})\). For both salts, the charge ordering transition (CO) is characterized by a decrease of the dielectric constant \(\varepsilon_a\) centered at \(T_{\text{CO}}\) (65 K and 85 K); concomitantly, the dielectric losses go through a maximum near \(T_{\text{CO}}\) and decreases rapidly below. The spin-Peierls transition (SP) is rather signalled by a rapid increase of \(\varepsilon_a\) below \(T_{\text{SP}}\) (16.5 K and 13 K) accompanied by a small peak in the losses. For the deuterated salt, we have observed important relaxation effects below 40 K that complicate the analysis of the dielectric function in the SP ground state. The temperature dependence of the SP anomalies was analysed in magnetic field values up to 18 Tesla.

Mario Poirier
Universite de Sherbrooke

Date submitted: 13 Nov 2008

Electronic form version 1.4