MAR09-2008-000425

Abstract for an Invited Paper for the MAR09 Meeting of the American Physical Society

Atomic Motions in Ionic Hydrides: MgH_2 , $NaMg_3H_3$, and $LiBH_4$

MARK CONRADI, Washington University

In hydrogen storage, rapid hydrogen diffusion is a key component for rapid reaction rates of dehydriding and rehydriding. In metallic systems, the light interstitial H atoms typically do display rapid diffusion. However, recent interest has focused on ionic and complex hydrides of light metal-atoms because of their high weight fractions of reversible hydrogen. These ionic complex hydrides generally reveal slow hydrogen diffusion and resultingly slow reaction kinetics. We report here studies of H diffusion using NMR in several such hydrides. In MgH₂, the rate ω_H of H hopping remains too slow to narrow the H NMR up to 400 °C. T_{1D} measurements, however, can detect the motion and find an activation energy of 1.72 eV, the first reported direct measurement of diffusion in MgH₂. In ball-milled (bm) material with Nb₂O₅ catalyst additive, a fraction of the resonance intensity is narrowed starting at 50 °C, with the narrow fraction growing to 30% by 400 °C. A model for continuous growth of the narrow line, based on a wide distribution of motion rates, is presented. Ball-milling also greatly increases the laboratory-frame relaxation rates, T_1^{-1} , from paramagnetic defects created by the mechanical process. In bm NaMgH₃, an even larger fraction of the resonance is motionally-narrowed, growing to nearly 100% by 300 °C. Clearly, ballmilling has a much more profound effect on ionic hydrides than the simple reduction of grain sizes and diffusion distances. In coarse-grain LiBH₄ (with 13.8 weight% reversible hydrogen), an orientationally disordered solid phase occurs above 110 °C. Above the transition, the rate of Li ion diffusion increases remarkably. H diffusion starts to narrow the H NMR line around 170 °C, continuing to narrow up to the melt near 280 °C. To distinguish diffusion of (already rapidly rotating) BH₄ units from H exchange between neighboring BH_4 , the ¹¹B resonance was studied. The boron line central transition becomes much narrower (400 Hz) than the width (1500 Hz) expected from Van Vleck M_2 for the case of static boron spins (with rapid Li and H diffusion). Thus, intact BH₄ units are the diffusing species. Even in molten LiBH₄, the BH₄ lifetime is found to be at least 2 seconds from observations of the B-H J-coupling pattern, so it is probably much larger in the solid.