Abstract Submitted for the MAR09 Meeting of The American Physical Society

Intersection of two nanotubes: density of states modulated by plasmon beatings with period governed by Luttinger-liquid parameter¹ VAGHARSH MKHITARYAN, YUAN FANG, JORDAN GERTON, EUGENE MISHCHENKO, MIKHAIL RAIKH, Department of Physics, University of Utah — We study theoretically the plasmon scattering at the intersection of two metallic carbon nanotubes. We demonstrate that for a small angle of crossing, $\theta \ll 1$, the transmission coefficient is an *oscillatory* function of λ/θ , where λ is the interaction parameter of the Luttinger liquid in an individual nanotube. We calculate the tunnel density of states, $\nu(\omega, x)$, as a function of energy, ω , and distance, x, from the intersection. In contrast to a single nanotube, we find that, in the geometry of crossed nanotubes, conventional "rapid" oscillations in $\nu(\omega, x)$ due to the plasmon scattering acquire an aperiodic "slow-breathing" envelope which has λ/θ nodes.

¹Supported by the Petroleum Research Fund, DOE and Research Corporation.

Mikhail Raikh Department of Physics, University of Utah, Salt Lake City, UT 84112

Date submitted: 03 Dec 2008

Electronic form version 1.4