Infrared spectroscopy of gated structures based on single- and bi-layer graphene¹

DMITRI BASOV, UCSD

Infrared spectroscopy was employed to investigate the charge dynamics in graphene integrated in tunable gated devices (Nature Physics 4, 532 (2008)). These measurements verified that electrons in single-layer graphene behave like Dirac quasiparticles but most importantly revealed several unexpected results that are beyond the theoretical predictions for idealized graphene. Several of our findings, including a systematic enhancement of the Fermi velocity at low energy and also the “residual” conductivity at frequencies below $2E_F$ are indicative of many-body interactions. Recent infrared study of bilayer graphene uncovered a pronounced asymmetry in the optical conductivity upon injection of electrons and holes (arXiv:0807.3776). We believe this result is suggestive of a marked asymmetry between the valence and conduction bands in bilayer samples.

¹Work at UCSD is supported by DOE