Abstract Submitted for the MAR09 Meeting of The American Physical Society

First-Principles Determination of Crystal Structures, Phase Stability, and Reaction Thermodynamics in the Li-Mg-Al-H Hydrogen Storage System¹ ALIREZA AKBARZADEH², California State University Northridge, CHRIS WOLVERTON³, Northwestern University, VIDVUDS OZOLINS⁴, University of California Los Angeles — First-principles DFT calculations have been used to investigate the crystal structures, thermodynamic stability, and decomposition pathways of Li-Mg-Al-H hydrogen storage compounds. We find that the recently discovered LiMg(AlH₄)₃ compound is marginally stable with respect to decomposition into LiAlH₄ and Mg(AlH₄)₂; however, we also find that LiMg(AlH₄)₃ is unstable with respect to H₂ release and decomposes exothermically into LiMgAlH₆, Al, and H₂ in excellent agreement with measurements. Using ICSD crystal structures database, we predict that the hypothetical MgAlH₅ compound should assume the orthorhombic BaGaF₅ prototype structure. We also discuss that phonon vibrations have sizeable effects on the enthalpies and entropies of hydrogen release reactions of Li-Mg-Al-H compounds.

¹This research was supported by the US Department of Energy under grant DE-FG02-05ER46253 ²Dept. of Physics & Astronomy

³Dept. of Materials Science and Engineering

⁴Dept. of Materials Science and Engineering

Alireza Akbarzadeh California State University Northridge

Date submitted: 17 Nov 2008

Electronic form version 1.4