Discovery of a pressure-induced “collapsed” phase in CaFe$_2$As$_2$

A. KREYSSIG1,2, 1Ames Laboratory, 2Dep. of Physics and Astronomy, Iowa State University, Ames, M.A. GREEN3,4, 3NIST Center for Neutron Research, Gaithersburg, 4Dep. of Materials Science and Engineering, University of Maryland, College Park, Y. LEE1,2, G.D. SAMOLYUK1,2, P. ZAJDEL3,5, 5Dep. of Chemistry, University College of London, UK, J.W. LYNN3, 3S.I. BUD'KO1,2, M.S. TORIKACHVILI6, 6Dep. of Physics, San Diego State University, San Diego, N. NI1,2, S. NANDI1,2, J.B. LEÃO3, S.J. POULTON3,4, D.N. ARGYRIOU7, 7Helmholtz-Zentrum Berlin fuer Materialien und Energie, Germany, B.N. HARMON1,2, R.J. MCQUEENEY1,2, P.C. CANFIELD1,2, A.I. GOLDMAN1,2 — Recent investigations of the superconducting iron-arsenide families have highlighted the role of pressure, be it chemical or mechanical, in fostering superconductivity. Here we report that CaFe$_2$As$_2$ undergoes a pressure-induced transition to a non-magnetic, volume “collapsed” tetragonal phase, which becomes superconducting at lower temperature. Spin-polarized total-energy calculations on the collapsed structure reveal that the magnetic Fe moment itself collapses, consistent with the absence of magnetic order in neutron diffraction.

– The support by U.S. DOE (DE-AC02-07CH11358) and NSF (DMR-0306165 and DMR-0805335) is acknowledged.

Andreas Kreyssig
Ames Laboratory

Date submitted: 17 Nov 2008