Confinement distance of the closure structure around a single
hole in a 2D magnetic thin film1 M. VELEZ, G. RODRIGUEZ-RODRIGUEZ,
H. RUBIO, A. PEREZ-JUNQUERA, J.I. MARTIN, J.M. ALAMEDA, Dpto. Fisica,
Univ. Oviedo-CINN, 33007 Oviedo, Spain, J.V. ANGUITA, IMM-CNM-CSIC,
28760 Madrid, Spain — One common feature in many magnetic nanostructures,
such as nanorings or patterned thin films \cite{1}, is the existence of non magnetic holes
within the magnetic material. However, up to now, the simple problem of a a single
non magnetic hole in a 2D magnetic film has received little attention, even though
it is qualitatively different from the blade domains that appear around holes in 3D
magnetic material. In this work \cite{2} this basic problem has been analyzed in detail
by magnetic force microscopy, micromagnetic simulations and an analytical model.
The closure magnetization configuration can be described by two -1/2 half vortices
located at the hole edge along the easy anisotropy axis, and confined within a dis-
tance L that is determined by the minimization of magnetostatic and anisotropy
energies constrained by the magnetic charge conservation within the system. \cite{1} A.

1Work supported by Spanish MICINN under grants NAN2004-09087, FIS2005-07392
and FIS2008-06249.

M. Velez
U. Oviedo

Date submitted: 17 Nov 2008

Electronic form version 1.4