Orbitals, reduced dimensionality and spin gaps in correlated oxides

DANIEL KHOMSKII, II Physikalisches Institut, Universitaet zu Koeln

Due to directional character of orbitals very often orbital ordering leads to an effective dimensionality reduction. Especially strong are these effects in systems with triply-degenerate t_{2g} electrons. One of the striking consequences thereof is the possibility to form spin-gap states instead of long-range magnetic ordering. Such spin gap states may be formed on dimers, on trimers, on bigger clusters and even on chains. In the talk I will review this question, discuss different situations and different mechanisms of spin gap formation, and illustrate these general ideas on several examples (perovskite KCuF$_3$; spinels MgTi$_2$O$_4$ and CuIr$_2$S$_4$ [1]; pyroxene NaTiSi$_2$O$_6$ [2]; layered systems La$_4$Ru$_2$O$_{10}$ with square [3], LiVO$_2$ with triangular [4], Li$_2$RuO$_3$ with honeycomb lattices [5], pyrochlore Tl$_2$Ru$_2$O$_7$ [6])