Generic Phase Diagram for Bose-Einstein Condensation of Weakly Interacting Symmetric Bosonic Mixtures

A.B. KUKLOV, CSI, CUNY, T. BLANCHARD, ENS, Cachan, France, B.V. SVISTUNOV, UMASS, Amherst, USA, and Kurchatov Institute, Russia — Weakly interacting Bose gas represents strongly correlated classical field within a domain (determined by the gas parameter \(\xi \)) of its Bose-Einstein condensation (BEC) temperature \(T = T_c \). Thus, \(N \)-component weakly interacting mixtures representing some symmetry can potentially exhibit rich phase diagram (PD). In particular, it can feature quasi-molecular phases preceding actual formation of the ODLRO in the vicinity of \(T_c \). However, realization of a specific part of the PD depends on details of interactions. As examples, we consider mixtures characterized by \(O(2) \times O(2) \) symmetry \((N = 2) \) and spin \(S = 1 \) with the symmetry reduced to \(U(1) \times U(1) \) \((N = 3) \). Monte Carlo simulations of these systems find a single line of the respective two- and three-component BEC transitions which has tricritical point separating II and I order transitions. No quasi-molecular phases have been found despite that naïve mean field (with one loop correction) predicts it. We discuss how such phases can emerge above the actual \(N \)-component BEC transition. One suggestion relies on Feschbach resonance detuned into negative inter-specie scattering length even when the gas parameter remains small. We acknowledge support from NSF grants PHY 0653135, 0653183 and CUNY grant 80209-0914.

A.B. Kuklov
CSI, CUNY

Date submitted: 18 Nov 2008

Electronic form version 1.4