Tackling localized d-states: a systematic investigation by $GW@LDA+U$ Hong Jiang, Ricardo I. Gomez-Abal, FHI, Berlin, Germany, Patrick Rinke, UC Santa Barbara, USA, Matthias Scheffler, FHI, Berlin, Germany — First-principles modeling of systems with localized d-states is currently a great challenge in condensed matter physics. Density-functional theory (DFT) in the standard local-density approximation (LDA) proves to be problematic. This can be partly overcome by including local Hubbard U corrections (LDA+U), but itinerant states are still treated on the LDA level. Many-body perturbation theory in the GW approach offers both a quasiparticle perspective (appropriate for itinerant states) and an exact treatment of exchange (appropriate for localized states), and is therefore promising for these systems. Here we present a systematic investigation of the G_0W_0 method based on LDA+U ($G_0W_0@LDA+U$) for a series of prototype systems: 1) ZnS with semicore d-states, 2) ScN and TiO$_2$ with empty d-states and 3) late transition metal oxides (MnO, FeO, CoO and NiO) with partially occupied d-states. We show that for ZnS, ScN and TiO$_2$, the G_0W_0 band gap only weakly depends on U, but for the other transition metal oxides the dependence on U is as strong as in LDA+U. These different trends can be understood in terms of changes in the hybridization and screening. Our work demonstrates that $G_0W_0@LDA+U$ with “physical” values of U provides a balanced and accurate description of both localized and itinerant states.

Hong Jiang
FHI, Berlin, Germany

Date submitted: 18 Nov 2008