Abstract Submitted for the MAR09 Meeting of The American Physical Society

A Brief Introduction to the Truncated Eigenfermion Decomposition

JONATHAN E. MOUSSA, JAMES R. CHELIKOWSKY, UT Austin — We present a computational formalism for the approximate unitary transformation of a many-body fermion Hamiltonian with two-body interactions. This work is a further development of the numerical canonical transformation approach of S. R. White [J. Chem. Phys. 117, 7472 (2002)]. The Hamiltonian can be diagonalized in a basis of eigenfermion operators, in which case the eigenstates are all single Slater determinants of eigenfermions. The transformation of two-body interactions generates higher-order interactions that can be approximated by effective two-body interactions using a novel generalization of normal ordering. The error in representing a target eigenstate is minimized by performing the generalized normal ordering with respect to that eigenstate. Numerical results are presented for several test cases, including Hubbard model clusters.

This work was supported in part by NSF under DMR-0551195 and the U.S. Department of Energy under DE-FG02-06ER46286 and DE-FG02-06ER15760.

Jonathan E. Moussa
UT Austin

Date submitted: 18 Nov 2008

Electronic form version 1.4