Abstract Submitted for the MAR09 Meeting of The American Physical Society

Crowding Effects on the Unfolding of Ubiquitin¹ DAVID PINCUS, Institute For Physical Science and Technology, University of Maryland, DEVARA-JAN THIRUMALAI, Director, Biophysics Program, University of Maryland — Using a coarse-grained representation of polypeptide chains, we probed the mechanical stability of Ubiquitin (Ub) monomers and trimers ((Ub)₃) in the presence of monodisperse spherical crowding agents. Our findings indicate that crowding increases the volume fraction (Φ_c) -dependent average force $(\langle f_u(\Phi_c) \rangle)$, relative to the value at $\Phi_c = 0$, needed to unfold Ub and the polyprotein. Furthermore, we found that average unfolding forces increase with decreasing crowder diameter (σ_c) . The average unfolding force $\langle f_u(\Phi_c) \rangle$ depends on the ratio $\frac{D}{R_g}$, where $D \approx \sigma_c(\frac{\pi}{6\Phi_c})^{\frac{1}{3}}$ with R_q being the radius of gyration of Ub (or (Ub)₃) in the unfolded state. Examination of the unfolding pathways shows that, relative to $\Phi_c = 0$, crowding promotes reassociation of ruptured secondary structural elements. Both the nature of the unfolding pathways and $\langle f_u(\Phi_c) \rangle$ for (Ub)₃ are altered in the presence of crowding particles with the effect being most dramatic for the subunit that unfolds last. We predict that $\langle f_u(\Phi_c) \rangle$ scales in a simple manner with Φ_c .

¹This work was supported in part by NSF (CHE 05-14056) and NIGMS (F32GM077940) grants, and NERSC computing resources.

David Pincus Institute For Physical Science and Technology, University of Maryland

Date submitted: 17 Nov 2008 Electronic form version 1.4