Frequency dependent magneto-dielectric effect in bilayer manganite \(\text{Pr(Sr}_{0.1}\text{Ca}_{0.9})_2\text{Mn}_2\text{O}_7 \)\(^1 \) BARNALI GHOSH-SAHA, S.N. Bose National Centre for Basic Sciences, D. BHATTACHARYYA, Central Glass and Ceramic Institute, S. PATNAIK, Jawaharlal Nehru University, A.K. RAYCHAUDHURI, S. ARUMUGAM — We report novel frequency dependent magneto-dielectric effect and a strong dielectric anomaly near Neel temperature (\(T_N \)) in a single crystal of bilayer manganite \(\text{Pr(Sr}_{0.1}\text{Ca}_{0.9})_2\text{Mn}_2\text{O}_7 \) system. The magneto-dielectric effect measured in a field of 3T shows large frequency dependence and reaches a maximum (~25%) near \(T_N \) at a measurement frequency of 1 kHz. Change in frequency leads to a change in the sign of the effect. There is a sizeable dielectric relaxation process near \(T_N \), which exhibits an activated behavior and strongly non-Debye nature at or below \(T_N \) while becoming Debye like at higher temperature.

\(^1\)The work was supported by the Department of Science and Technology, Government of India.