Abstract Submitted for the MAR09 Meeting of The American Physical Society

Insights on copper coordination and reactivity of endonuclease EcoRI by ESR spectroscopy and modeling MING JI — The cleavage of DNA by restriction endonuclease EcoRI is catalyzed by metal ions such as Mg^{2+} . However, Cu^{2+} does not catalyze the cleavage of DNA by EcoRI. In order to understand the functional difference between Cu^{2+} and Mg^{2+} , coordination of Cu^{2+} in the EcoRI–DNA complex was clarified by ESR and MD simulation. There are two Cu^{2+} components in the specific EcoRI-DNA complex. Each component has one N atom from histidine imidazole and one oxygen atom from the phosphate backbone of DNA coordinate to Cu^{2+} based on the ESR experimental results. MD simulation further confirmed that the N δ atom of His114 imidazole and one oxygen atom from the phosphate backbone of DNA coordinate to Cu^{2+} . Difference in the coordination of Cu^{2+} and Mg^{2+} explains their different functional behaviors.

Ming Ji

Date submitted: 19 Nov 2008 Electronic form version 1.4