Abstract Submitted for the MAR09 Meeting of The American Physical Society

Giant Magnetoresistance and Unusual Magnetic Behavior in Single Crystals of the Layered Arsenide EuRh₂As₂ YOGESH SINGH, D.C. JOHNSTON, Ames Laboratory & Dept. of Phys. & Astron., Iowa State Univ., Ames IA 50011 — Magnetic susceptibility χ , isothermal magnetization M, resistivity ρ , Hall effect, and heat capacity C measurements on EuRh₂As₂ reveal complex and unusual magnetic behavior. The $\chi(T)$ data gave a small Weiss temperature $\theta \approx 12 \text{ K}$ indicating predominantly ferromagnetic interactions between the Eu²⁺ moments. Below T = 47 K, however $\chi(T)$ indicates that an antiferromagnetic transition occurs instead. The unusually high $T_{\rm N}$ compared to θ ($\theta/T_{\rm N} \approx 0.26$) suggests novel physics. A metamagnetic transition is observed in the M versus H data at $T < T_{\rm N}$ when H is applied in the ab plane. The metamagnetic field shows an unusual T dependence, decreasing slightly between T = 2 K and 30 K and increasing again on approaching T_N before vanishing abruptly at T_N . In zero field the $\rho(T)$ data indicate metallic behavior between 2 K and 300 K. However, at low temperatures $T \leq 30 \text{ K}$, $\rho(T)$ increases dramatically in an applied field H and we observe a giant positive magnetoresistance of $\approx 90\%$ at T=2 K and H=8 T. For T<30 K $\rho(T)$ increases for $H \geq 1$ T. A monotonic reduction of the electronic specific heat coefficient γ with H and a change in sign of the Hall coefficient from negative above T = 15 K to positive for lower T are also observed.

*Supported by DOE-BES under Contract No. DE-AC02-07CH11358.

Yogesh Singh Ames Laboratory

Date submitted: 19 Nov 2008 Electronic form version 1.4