Concomitant enhancement of spin susceptibility and pairing interaction in the reduced carrier-density regime of Li$_x$ZrNCl superconductor

Yuichi Kasahara, Tsukasa Kishiume, Takumi Takano, Katsuki Kobayashi, Yoshihiro Iwasa, IMR, Tohoku Univ., Eiichi Matsumoka, Hideya Onodera, Department of Physics, Tohoku Univ., Yasujiro Taguchi, CMRG, ASI, RIKEN — Li-intercalated layered nitriles Li$_x$ZrNCl are novel superconductors, in which superconductivity emerges at relatively high transition temperature $T_c \sim 12 - 15$ K with very low carrier density $\sim 10^{21}$ cm$^{-3}$. The pristine $\beta$-ZrNCl is a simple band insulator, and electron doping is achieved by Li intercalation. Insulator-to-superconductor (IS) transition takes place at $x \sim 0.05$ with maximum $T_c$ value of $\sim 15$ K and $T_c$ decreases with further doping, which is opposite trend to the other superconductors in doped band insulators. Here we show the results of magnetic susceptibility measurements on Li$_x$ZrNCl with systematically controlled $x$. Estimated spin susceptibility $\chi_s$ is almost temperature-independent without substantial anisotropy. With decreasing $x$, $\chi_s$ evolves strongly, same as $T_c$. On the other hand, specific heat study revealed that the density of states is reduced but the pairing interaction is enhanced on the verge of IS transition. Therefore, our results may indicate that magnetic fluctuations are enhanced toward a band-insulator and that they are possibly responsible to superconductivity even in the present small carrier-density system.

Yuichi Kasahara
IMR, Tohoku Univ.

Date submitted: 18 Nov 2008