Abstract Submitted for the MAR09 Meeting of The American Physical Society

Frustrated magnetism in the diamond-chain like compound $\mathbf{Ba}_{3}\mathbf{Cu}_{3}\mathbf{Sc}_{4}\mathbf{O}_{12}^{1}$ A.V. MAHAJAN, Department of Physics, IIT Bombay, B. KOTESWARA RAO, Dept. of Physics, IIT Bombay, J. BOBROFF, Labo. de Physique des Solides, Orsay, France — The structure of $Ba_3Cu_3Sc_4O_{12}$, having chains of corner-shared square plaquettes, is reminiscent of the "diamond chain" compound $Cu_3(CO_3)_2(OH)_2$ which has shown novel magnetic properties. We report preparation of polycrystalline samples of $Ba_3Cu_3Sc_4O_{12}$ followed by temperature dependent magnetic susceptibility $\chi(T)$ and heat capacity $C_p(T)$ measurements in applied magnetic fields up to H = 90 kOe. At high-T, $\chi(T)$ is fitted by the Curie-Weiss law $(\chi(T)=C/(T-\theta_{CW}))$ and is suggestive of ferromagnetic interactions (θ_{CW}) ~ 70 K). However, in low-fields, the $\chi(T)$ shows a sharp peak at $T_N \sim 16$ K and the variation at lower temperatures is indicative of antiferromagnetic ordering. Clear evidence of the transition at T_N is also seen in heat capacity data. The sharp peak in $\chi(T)$ and $C_p(T)$ moves to lower temperatures with increasing H. The T_N is found to be strongly lowered by an applied field and $T_N \sim 0$ for H ~ 70 kOe. Further work to understand the relative exchange couplings between various Cu atoms is currently in progress.

¹We thank IFCPAR for financial support.

A.V. Mahajan Department of Physics, IIT Bombay

Date submitted: 19 Nov 2008

Electronic form version 1.4