Mechanism of Spontaneous Electric Polarization Flop in TbMnO$_3$

HAJIME SAGAYAMA, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, NOBUYUKI ABE, Department of Physics, Tohoku University, TAKASHI ARIMA, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, KAZUAKI IWASA, Department of Physics, Tohoku University — Orthorhombic perovskite TbMnO$_3$ is one of the typical multiferroic systems. Spontaneous electric polarization (P) along the c-axis which originates from the spiral configuration of Mn$^{3+}$ spins rotating in the bc-plane appears below T_C (~27K). P//c is turned to the direction along the a-axis by applying a magnetic field along a- or b-axis. Magnetic structure analysis and a spin-polarized neutron diffraction study of 160Gd$_{0.7}$Tb$_{0.3}$MnO$_3$ strongly suggest that P//a in TbMnO$_3$ in high magnetic fields also originates from spin spiral rotating in the ab-plane as in the case of P//c. It has been pointed out that anisotropic Tb f-electron magnetic moments play an important role for the complicated electric polarization flop. In this study, we have confirmed the change of spin basal plane of TbMnO$_3$ from the bc- to ab- plane by applying a magnetic field along the b-axis using spin-polarized neutron diffraction technique. We observed that a magnetic fields induce a C-type antiferromagnetic structure caused by the local anisotropy of Tb magnetic moments. We have succeeded in explaining the electric polarization flop of TbMnO$_3$ in terms of a coupling between Mn$^{3+}$ spins and anisotropic Tb magnetic moments.

Hajime Sagayama
Institute of Multidisciplinary Research for Advanced Materials,
Tohoku University

Date submitted: 20 Nov 2008
Electronic form version 1.4