The Influence of Electric Fields on the Order-Disorder Transition Temperature of Block Copolymer Systems

HEIKO SCHOBERTH, Lehrstuhl fuer Physikalische Chemie II, Universitaet Bayreuth, D-95440 Bayreuth, Germany, KRISTIN SCHMIDT, Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA, KERSTIN SCHINDLER, ALEXANDER BÖKER, Lehrstuhl fuer Physikalische Chemie II, Universitaet Bayreuth, D-95440 Bayreuth, Germany — We investigate the influence of electric fields on the phase behavior of diblock copolymers in concentrated solutions using synchrotron small-angle X-ray scattering (synchrotron SAXS). When heating the solutions through the order-disorder transition temperature T_{ODT}, we find a significant decrease in T_{ODT} with increasing electric-field strength. In addition we found a temperature regime in which it is possible to switch between the mixed and phase separated state at constant temperature upon application of a moderate electric field.

This work was carried out in the framework of the SFB 481 (TP A2) funded by the German Science Foundation (DFG). AB acknowledges financial support by the Lichtenberg-Program of the VolkswagenStiftung.